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Abstract
There is growing evidence for a connection between random matrix theories
used in physics and the theory of the Riemann zeta function and L-functions.
The theory underlying the location of the zeros of these generalized zeta
functions is one of the key unsolved problems. Physicists are interested because
of the Hilbert–Polya conjecture, that the non-trivial zeros of the zeta function
correspond to the eigenvalues of some positive operator. To complement
the continuing theoretical work, it would be useful to study empirically the
locations of the zeros by different methods. In this paper we use the rescaled
range analysis to study the spacings between successive zeros of these functions.
Over large ranges of the zeros the spacings have a Hurst exponent of about
0.095, using sample sizes of 10 000 zeros. This implies that the distribution
has a high fractal dimension (1.9), and shows a lot of detailed structure. The
distribution is of the anti-persistent fractional Brownian motion type, with a
significant degree of anti-persistence. Thus, the high-order zeros of these
functions show a remarkable self-similarity in their distribution, over fifteen
orders of magnitude for the Riemann zeta function! We find that the Hurst
exponents for the random matrix theories show a different behaviour. A
heuristic study of the effect of low-order primes seems to show that this effect
is a promising candidate to explain the results that we observe in this study.
We study the distribution of zeros for L-functions of conductors 3 and 4, and
find that the distribution is similar to that of the Riemann zeta functions.

PACS numbers: 02.70.Rr, 05.45.Df, 05.45.Pq

1. Introduction

The statistical distribution of the spacings of the zeros of the generalized zeta functions,
including the Dirichlet L-functions, is of interest to mathematicians and physicists.
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Mathematicians study the spacings because of its applications to analytic number theory,
while physicists study it because of its relation to the theory of the spectra of random matrix
theories (RMT) [1–4] and the spectra of classically chaotic quantum systems in physics. While
many theoretical studies have been done and are being done, the relationship is incompletely
understood, and it will be useful to augment our knowledge with empirical studies using
several complementary approaches. In this paper we apply the widely utilized rescaled range
analysis to numerically study the behaviour of the spacings. The analysis gives interesting
insights into the asymptotic behaviour of the zero spacings. The paper is organized as follows.
In section 2 we establish the required notation for the Riemann zeta function and L-functions.
We also mention the observed relation to random matrix models and to studies of quantum
chaology. In section 3 we introduce rescaled range analysis. The analysis is applied to the
large height Riemann zeta zeros as calculated by Odlyzko [5]. We then apply it to the zeros
of the Dirichlet L-functions at medium height, as calculated by Rubinstein [6]. In section 4
we discuss the empirical behaviour of the Hurst exponent for the Gaussian unitary ensemble
(GUE). We also present a slightly different way of performing rescaled range analysis for
the Riemann zeta zeros, which is more appropriate for comparison with the GUE results.
In section 5 we give a brief introduction to quantum chaology and its implications for the
possible role of the low-order primes in the study of the Riemann zeta zeros. We then consider
heuristically the influence of the low-order primes on the behaviour of the Hurst exponent for
the Riemann zeta zeros. In section 6 we give a brief summary of the results, and indicate the
possible areas that would seem to be good candidates for further work.

2. Generalized zeta functions and random matrix models

In this section we establish the required notation for the Riemann zeta function and L-functions.
We also mention the observed relation to random matrix models and to studies of quantum
chaology.

The Riemann zeta function is defined for Re(s) > 1 by

ζ(s) =
∞∑

n=1

n−s =
∏
p

(1 − p−s)−1. (1)

The product expression over the primes was first given by Euler. Equation (1) converges
for Re(s) > 1. It was shown by Riemann [7–10] that ζ(s) has a continuation to the complex
plane and satisfies a functional equation

ξ(s) := π−s/2�(s/2)ζ(s) = ξ(1 − s); (2)

ξ(s) is entire except for simple poles at s = 0 and 1. Riemann multiplied the definition
by s(s − 1) to remove the poles. We write the zeros of ξ(s) as 1/2 + iγ . The Riemann
hypothesis asserts that γ is real for the non-trivial zeros. There is an impressive body of
empirical evidence for this hypothesis, but a formal proof has been elusive. The numerical
studies have found regions where the hypothesis is almost violated, but no counter-example
has been found. A conjecture attributed to Hilbert and Polya is that the Riemann hypothesis
is true because the non-trivial zeros of the zeta function are related to the eigenvalues of some
positive operator. We order the γ s in increasing order, with

· · · γ−1 < 0 < γ1 � γ2 · · · . (3)

Then γj = −γ−j for j = 1, 2, . . . , and γ1, γ2, . . . are roughly 14.1347, 21.0220, . . . . The
remarkable properties of the Riemann zeta function can be generalized to a host of other zeta
and L-functions. The simplest of the generalizations are for the Dirichlet L-functions L(s, χ)
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defined as follows: q � 1 is an integer and χ is a primitive character of the Abelian group
formed by all integers smaller than and relatively prime to q. χ is extended to all integer
values by making it periodic, and χ(m) = 0 if m and q have a common factor. Then

L(s, χ) =
∞∑

n=1

χ(n)n−s =
∏
p

(1 − χ(p)p−s)−1. (4)

The analogue of the functional equation (2) is known for the generalized zeta functions, and
they also seem to satisfy the generalized Riemann hypothesis. q is called the conductor of the
L-function.

Odlyzko [5, 11] has made extensive numerical studies of the zeros of the Riemann zeta
function and their local spacings. He also studied their relation to the random matrix models of
physics. Wigner [1] suggested that the resonance lines of a heavy nucleus might be modelled
by the spectrum of a large random matrix. Gaudin [3] and Gaudin-Mehta [2] gave results
for the local (scaled) spacing distributions between the eigenvalues of typical members of the
ensembles as N → ∞, based on their study of orthogonal polynomials. Later Dyson [4]
introduced the closely related circular ensembles.

Odlyzko confirmed numerically that the local spacings of the zeros of the Riemann zeta
function obey the laws for the (scaled) spacings between the eigenvalues of a typical large
unitary matrix. That is, they obey the laws of the Gaussian unitary ensemble (GUE) [1–4].
Katz and Sarnak [12] state that at the phenomenological level this may be the most striking
discovery about zeta since Riemann. Odlyzko’s computations thus verified the discoveries
and conjectures of Montgomery [13–15]. We will discuss this further in section 5.

Further evidence for the connection between random matrices and generalized zeta
functions comes from calculations of the zero correlation functions [16–19], and the study of
the low-lying zeros of families of L-functions [20]. Extensive numerical computations [5, 6]
have strengthened the connection.

Several authors [21–25] have studied the moments of the Riemann zeta function and
families of L-functions, and the relation to characteristic polynomials of random matrices.
The autocorrelation functions were studied in [26, 27]. The relation of the Riemann zeta
function to probability laws was studied in [28].

It has been shown that the long-range statistics of the zeros of the Riemann zeta function
are better described in terms of primes than by the GUE RMT. Berry [29–32] has related this
to a study of the semiclassical behaviour of classically chaotic physical systems. The primitive
closed orbits of the physical system are analogous to the primes p. We will expand on this
further in section 5.

In what follows we apply the rescaled range analysis to study the distribution of the
spacings δj = γj+1 − γj . For the zeros of the Riemann function we study four ranges of
the spacings: δj for 1 � j � 105, 1012 � j � 1012 + 104, 1021 � j � 1021 + 104, and
1022 � j � 1022 + 104, using the zeros from the calculations of Odlyzko [5], and zeros
around 35 161 820 using the calculations of Rubinstein [6]. For the Dirichlet L-functions of
conductors 3 and 4 we use the zeros from the calculations of Rubinstein [6]. We selected
these values because they are those which have zeros high enough that some of the asymptotic
behaviour can be expected to occur.

Figure 1 shows a plot of the zero differences for zeros in the range 1012 � j � 1012 + 104.
One can see that the differences of the zeros jump around significantly, and the curve is noisy.
The plot of the differences apparently has a large fractal dimension. Common measures for
the fractal dimension are the Hausdorff dimension and the box dimension [33]. Rescaled
range analysis usually gives the box dimension of a graph. For convenience we briefly state
the definition of the box dimension. Let Nδ be the smallest number of boxes of side δ that
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Figure 1. Differences of Riemann zeta zeros for zeros in the range 1012 � j � 1012 + 104.

cover the graph F whose dimension we wish to measure. Then, as δ is made smaller, we will
need more boxes to cover the graph. The limit

Limδ→0
Nδ

− log(δ)
, (5)

if it exists, is denoted as the box dimension of the graph F. For smooth graphs, this limit will
be 1. If the graph is not smooth, then the limit would lie between 1 and 2.

3. Analysis of zero distributions for Riemann zeta and Dirichlet L-functions

In this section we introduce rescaled range analysis. The analysis is applied to the large
height Riemann zeta zeros as calculated by Odlyzko [5]. We then apply it to the zeros of
the Dirichlet L-functions at medium height, as calculated by Rubinstein [6]. We discuss the
possible implications of the results of the analysis.

Rescaled range analysis [34–38] has been widely used to study series of observations
which exhibit a combination of random (or pseudo-random) behaviour and regular behaviour.
A good feel for rescaled range analysis can be developed by considering idealized Brownian
motion in one dimension. Let X(t) denote the position of a one-dimensional particle. Let
the position get increments of constant magnitude and random sign at small time intervals
τ . Then, as shown, for example, in Falconer [33], for timescales large compared to the kick
interval τ , X(t) has the following properties.

(i) With probability 1, X(t) is a continuous function of t which is nowhere differentiable.
(ii) For any t � 0 and h > 0 (h large compared to kick interval), the increment X(t + h) −

X(t) is normally distributed with mean 0 and variance proportional to h. With suitable
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normalization,

Prob(X(t + h) − X(t) � x) = (2πh)−1/2
∫ x

−∞
exp(−u2/2h) du. (6)

(iii) If 0 � t1 � t2 � · · · � t2m, the increments X(t2) − X(t1), . . . , X(t2m) − X(t2m−1) are
independent.

(iv) With probability 1, X(t) has Hausdorff dimension and box dimension both equal to 1.5.

If the particle had a constant velocity in addition to the random kicks, the definition of X(t)

would be modified by subtracting out the uniform motion, so that the mean value of X(t)

would be still zero. Thus, X(t) is the sum of a large number of independent and identically
distributed random displacements, and the above results follow from the central limit theorem.

While Brownian motion graphs are of great theoretical importance, for practical
applications one has to consider more general models [33]. A widely used generalization
is fractional Brownian motion, in which the condition that successive increments should be
independent is relaxed. A fractional Brownian motion of order α is defined similar to the
Brownian motion, with the graph X(t) having the following properties:

(i) With probability 1, X(t) is a continuous function of t which is nowhere differentiable.
(ii) For any t � 0 and h > 0, the increment X(t + h) − X(t) is normally distributed with

mean 0 and variance proportional to h2α . With suitable normalization,

Prob(X(t + h) − X(t) � x) = (2π)−1/2h−α

∫ x

−∞
exp(−u2/2h2α) du. (7)

(iii) The increments X(t + h) − X(t) and X(t) − X(t − h) are not independent unless α is
1/2. If α > 1/2 then the increments tend to be of the same sign. If α < 1/2 then the
increments tend to differ in sign.

(iv) With probability 1, X(t) has Hausdorff dimension and box dimension both equal to 2−α.

Rescaled range analysis makes use of equation (7) and determines the order of the fractional
Brownian motion by studying how the vertical range X scales with the horizontal range h. The
input to the analysis is a sequence of observations similar to that shown in figure 1.

It is common practice to denote the series of independent increments occurring in the
rescaled range analysis by ξ(t), where t is the ordinate of the observation. For our study, the
series of increments are the differences of the zeros, which we have already denoted by δj .
Rescaled range analysis studies the fractal dimension and correlations of the δj by boxing the
observed data into bins of different sizes (the bin size being denoted by h), and by studying
how the vertical range scales as the bin size h is varied. In our studies we have varied h from
32 to the maximum possible value allowed by the sample size. For each h, we calculated
the R/S value for non-overlapping intervals (except for the end regions, where some overlap
was necessary), and took the average. The estimated Hurst exponent obviously depends on
the values of the bin size h that are considered, and on the maximum sample size. For large
sample sizes the dependence is not very sensitive, for the data we have studied.

In terms of the mean value of δj for a given bin of size h, 〈δ〉, the analysis defines X(t) by

X(t) =
t∑

u=1

(δu − 〈δ〉). (8)

Some remarks about equation (8) might be helpful. Firstly, we note that we subtract out the
average value of δ for the given bin, which is appropriate because we are interested in the spread
of the graph due to the random or quasi-random component. This is similar to subtracting out
the uniform displacement due to a constant velocity of the particle in the Brownian motion



13988 O Shanker

example above. Secondly, for the differences δj we have the relation that the sum of δj (δj is
γj+1 − γj ) from a to b equals γb+1 − γa . Thus, X(t) for our study is equal to the tth difference
of the zeros minus t times the average δ for the bin under consideration. This reflects the fact
that X(t) is a measure of the range of the graph. In particular, X(h) is zero, where h is the size
of the bin. The range R for the bin under consideration is defined as Max(X(t)) − Min(X(t))

where the maximum and minimum are taken for t between 1 and h, and S denotes the standard
deviation of the δj for the chosen bin. It may be worthwhile to emphasize again that the
quantities X(t), R, S, 〈δ〉, etc all depend on the bin under consideration.

As explained by Mandelbrot and Ness [39, 40], under quite general conditions, the
dimensionless rescaled range R/S varies with h as h → ∞ according to the scaling law

(R/S) = (ch)α, (9)

where α is defined as the Hurst exponent. One can use linear regression analysis on a log–log
plot of R/S against h to estimate the Hurst exponent α as the best fit slope of the log–log plot.
The results of rescaled range analysis are summarized by the Hurst exponent. From the above
discussion it follows that the Hurst exponent does not change if one adds the same constant
value to δj or if one multiplies all δj by the same constant value, since one subtracts out the
average value of δj in the analysis, and one scales the range using the standard deviation. Most
natural phenomenon seems to have a value of about 0.7 for α.

If δj behave like normal Brownian motion, then the Hurst exponent is 0.5. Any deviation
from this value implies that the values of the observable are not independent of each other.
Mandelbrot introduced a generalized form of the Brownian motion model, the fractional
Brownian motion [39, 40], as a typical simple family of random functions that models
asymptotic dependence. In this model the Hurst exponent lies in the range 0 < α < 1.
As mentioned earlier, the fractal dimension of the graph of the series of observations is
given by 2 − α. A low value of α implies a large fractal dimension, namely, a curve which
shows a lot of detailed structure. There are three types of generalized fractional Brownian
motion: (a) the persistent, for values of α in the range 0.5 < α < 1, (b) the case α = 0.5
which corresponds to the independent white noise processes of ordinary Brownian motion and
(c) the anti-persistent, for 0 < α < 0.5. In the anti-persistent range any increasing trend in
the past makes a decreasing trend in the future more probable, and vice versa. The strength
of this anti-correlation depends on the extent to which α is lower than 0.5. The graph for an
anti-persistent process shows a lot of jumps. We find that the spacings of the non-trivial zeros
for all the zeta functions show a large degree of anti-persistence.

For completeness we mention that a persistent type of fractional Brownian motion
implies that the increments’ persistence is maintained over longer periods of time, depending
on the excess of the Hurst exponent value over 0.5. If at some time in the past there was
a positive increment i.e., an increase, it is more likely that there will be an increase in the
future. A decreasing trend in the past implies the likelihood of a decreasing trend in the
future.

Falconer [33] gives examples of other fractal curves which show a similar scaling of the
vertical range with the horizontal range. Thus, the Hurst exponent that we are estimating
is in essence a measure of the fractal structure of the zeros, and does not imply that the
anti-correlation extends infinitely far.

For the zeros from the calculations of Odlyzko [5] we applied the rescaled range analysis
to four sets of spacings of the zeros (δj ): (a) 1 � j � 105, (b) 1012 � j � 1012 + 104,
(c) 1021 � j � 1021 + 104 and (d) 1022 � j � 1022 + 104. For the range 1 � j � 105 we
found a Hurst exponent of about 0.8. However, in this range the R/S values did not scale
according to equation (9). This is not surprising, since it is known that the distribution of zeros
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Figure 2. Hurst exponent estimate for Riemann zeta zeros in the range 1022 � j � 1022 + 104.

Table 1. Hurst exponent for high-order Riemann zeros, sample size 10 000.

Range of zeros Hurst exponent Standard error

1012 � j � 1012 + 104 0.093 0.007
1021 � j � 1021 + 104 0.094 0.012
1022 � j � 1022 + 104 0.100 0.013

reaches its asymptotic behaviour very slowly. This is related to the slow rate of growth of the
function S(t), defined by

S(t) := π−1 arg ζ
(

1
2 + it

)
. (10)

We therefore do not consider this region further in our rescaled range analysis. Table 1 shows
the results of the analysis for the remaining three ranges of the zeros.

One can see that the Hurst exponent is remarkably constant over fairly wide values of
the range of zeros. The low value of the exponent is interesting. It implies that there is a
large degree of anti-persistence. This means that the differences of the zeros jump around
significantly, leading to a noisy curve. The plot of the differences shows a large fractal
dimension (see figure 1).

Figure 2 shows the regression analysis for zeros in the range 1022 � j � 1022 + 104. The
horizontal axis is the log of the bin size (log2(h)), and the vertical axis is the log of the mean
R/S (log2(R/S)) for the given values of h. The slope of the best fit line gives the value of
the Hurst exponent. The best fit line is also shown in the figure. The data is fairly linear.
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Figure 3. Hurst exponent estimate for zeros of Dirichlet L-function of conductor 4.

Table 2. Hurst exponent for L-functions, sample size 100 000.

Order of largest zero studied Function Hurst exponent Standard error

35 161 820 Riemann zeta 0.091 0.004
31 712 310 Conductor 3 0.092 0.007
32 457 680 Conductor 4 0.092 0.007

For lower values of h the scaling behaviour is not expected to hold, since it an asymptotic
phenomenon.

Table 2 shows the results of the analysis for the Dirichlet L-functions. The sample size
used in all the cases reported in the table is 100 000 zeros. Figure 3 shows the regression
analysis for zeros of the L-function of conductor 4. As before, the horizontal axis is the log of
the bin size (log2(h)), and the vertical axis is the base 2 log of the mean R/S (log2(R/S)) for
the given values of h. The best fit line is also shown in the figure. The results of the analysis
for the L-functions are remarkably similar to the results for the Riemann zeta function.

Since the application of the rescaled range analysis has led to such interesting results,
one can ask what the implications are for the physics and the mathematics of the study of
the Riemann zeta function. As was discussed in section 2, two important topics which help
explain many properties of the zeta zero distributions are random matrix theory and the effect
of low-order primes. We will discuss these in separate sections. In the next section we
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compare the results for the Riemann zeta function at large heights with the behaviour of the
Hurst exponent for matrices chosen from the GUE.

4. Comparison with random matrix theory

In this section we discuss the empirical behaviour of the Hurst exponent for the GUE. We also
present a slightly different way of performing rescaled range analysis for the Riemann zeta
zeros, which is more appropriate for comparison with the GUE results.

To do the numerical investigations we need to determine the appropriate size N of the
matrices in the GUE. The matrix size N is usually taken to be such that the mean eigenvalue
spacings for the matrices and for the zeta function zeros at the desired height γ are equal.
Asymptotically, for the Riemann zeta function the mean number of zeros with height less than
γ (the smoothed Riemann zeta staircase) is [10]

〈NR(γ )〉 = (γ /2π)(ln(γ /2π) − 1) − 7
8 . (11)

Thus, the mean spacing of the zeros at height γ is 2π(ln(γ /2π))−1. The mean spacing of the
eigenvalues for the GUE is 2π/N , where N is the matrix size. Thus, the statistics of the zeta
zeros at height γ are to be compared with the RMT for matrices of size N = ln(γ /2π). We
choose the zeta zeros in the range 1022 � j � 1022 + 104 for the comparison. γ is 1.37 × 1021

for the zeros in this range, and hence N is 47. We recall that for the zeta zeros in this range, we
found a Hurst exponent of 0.1 when we used all the available zeros, which gave us a sample
size of 10 000 points. However, for the GUE the eigenvalues come in blocks of size N, and
hence it is not obvious what is the proper way to compare the results. One way is to generate
a set of matrices from the GUE (fixing the matrix size as discussed above), calculate the Hurst
exponent for each of them, and get the distribution of the Hurst exponents for the different
matrices. One can then also break the Riemann zeros in the range into blocks of N zeros and
generate the distribution of the Hurst exponents for these blocks. The small sample size makes
the uncertainties in the estimated exponent much larger than is the case for the estimate using
the full sample size. Since N = 47 is much smaller than the full sample size of 10 000, the
mean Hurst exponent for the zeta zeros calculated in this manner will be different from the
value 0.1 that we found earlier. Of course the value which was determined using the full range
is more accurate, but it may not be the appropriate value to use for comparing with the GUE
results.

When we calculate the Hurst exponents for the Riemann zeros by breaking them into
blocks of N zeros, we find that the mean Hurst exponent for the Riemann zeros is 0.34 for
blocks of size 47. The mean Hurst exponent for the GUE matrices of size 47 is 0.65. If we
recall our discussion of the Hurst exponent, we see that this is a significant difference. We
must emphasize that the right way to compare the GUE results with the Riemann zeta zero
analysis is not clear. To work with reasonably large matrices, we would need to be able to
compute zeros much higher on the critical line than we are currently able to do. Thus, the
results of this analysis have to be treated with caution, but this is probably the best that we can
do. We varied the block size from 40 to 51, and found that the mean Hurst exponent for the
Riemann zeros in the range 1022 � j � 1022 + 104 varied between 0.33 and 0.34. The GUE
mean value showed variation from 0.58 for N = 40 to 0.70 for N = 51. The two ranges of
variation are not directly comparable, and we merely present the variations to give the reader
some idea of the variability. In order to verify that the Hurst exponent distribution for the zeta
zeros is insensitive to the range chosen for study, we calculated the mean Hurst exponent for
Riemann zeros covering the range 1021 � j � 1021 + 104. For a block size of 47 we found
the mean exponent to be 0.33. We may mention that the Hurst exponents for the GUE RMT
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behave similarly to the spectra for the adjacency matrices of complex networks, which we had
investigated in a separate study.

One may wonder if relaxing the condition that the mean matrix eigenvalue spacing be equal
to the mean zeta zero spacing, and going to larger matrix sizes, will reduce the discrepancy
found above. We numerically studied the Hurst exponent for matrices of size 100, and found
that the discrepancy becomes worse. Thus, in spite of the ambiguities in comparing the
GUE results with the Riemann zeta results, the differences in the behaviour seem significant
enough that the RMT is disfavoured as an explanation for the results found in our zeta zero
analysis.

For completeness we should remark that as the block size is increased, the distribution of
the Hurst exponents for the Riemann zeta zeros becomes quite narrow, and settles down to the
constant values reported in earlier sections. An interesting topic for further research would be
the theoretical study of the Hurst exponent in the GUE as the matrix size N → ∞. The joint
probability distributions for the GUE eigenvalues [41] λ1 � λ2 · · · � λN is

2N(N−1)/2 exp
(
−

∑
λ2

i

) ∏
i<j

(λi − λj )
2

/(
πN/2

N∏
i=1

�(i)

)
. (12)

Edelman [41] shows that for large N the eigenvalues approach the zeros of the Hermite
polynomial of order N. This may be a promising direction to take in studying the problem.
In the next section we study the effect of the low-order primes.

5. Effect of the low-order primes

In this section we give a brief introduction to quantum chaology and its implications for the
possible role of the low-order primes in the study of the Riemann zeta zeros. We then consider
heuristically the influence of the low-order primes on the behaviour of the Hurst exponent for
the Riemann zeta zeros. We try to identify which aspect of the correspondence with quantum
chaology might shed some light on the low Hurst exponents that we observe for the Riemann
zeta zeros.

Quantum chaology is defined by Berry [31] as the study of semiclassical, but non-classical,
behaviour characteristic of systems whose classical motion exhibits chaos. By semiclassical
one means the limit as Planck’s constant h̄ → 0. The distribution of eigenvalues of quantum
chaotic systems shows universality [29–32]. The universality class depends on the symmetries
of the system’s Hamiltonian. For systems without time-reversal invariance the distribution of
eigenvalue spacings approaches that of the GUE. The connection between quantum chaology
and the Riemann zeta function comes about because the Riemann hypothesis would follow if
the imaginary parts γj of the non-trivial zeros of the Riemann zeta function are eigenvalues of
a self-adjoint operator. The relation of the zeta zero differences to the GUE, that we reviewed
in section 2, seems to indicate that the still-unknown dynamical operator (if one exists) would
not have time-reversal symmetry and would have a classical limit which is chaotic.

Let us denote the Riemann staircase, the number of zeros with height less than some value
γ , by NR(γ ). Thus,

NR(γ ) =
∞∑

j=1

�(γ − γj ), (13)

where � denotes the unit step function. Further evidence for the connection between quantum
chaology and the Riemann zeta function comes from the study of the fluctuations of NR(γ )
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from the smooth approximation 〈NR(γ )〉 in equation (11). The fluctuating part of the Riemann
staircase function can be written as [30]

NR,osc(γ ) = NR(γ ) − 〈NR(γ )〉 = − 1

π
limη→0Im ln ζ

(
1

2
− i(γ + iη)

)
. (14)

If we use the product form of equation (1) in equation (14) (ignoring for the moment the
question of how to truncate the asymptotic divergent product when equation (1) is used on the
critical line. See [30] for a discussion), we get

NR,osc(γ ) = − 1

π

∑
p

∞∑
m=1

sin(mγ ln p)/(mpm/2) (15)

where the label p indicates a sum over the primes. For a quantum chaotic system a very
similar formula can be written down for the fluctuating part of the spectral staircase (the
function which counts the number of eigenvalues less than a given energy E). For quantum
chaological systems the spectral staircase fluctuation formula follows from the semiclassical
approximation, where the eigenvalue density fluctuations can be expressed in terms of the
actions related to closed orbits. Berry [30] refers to the underlying theory by the intriguing
term Ouroborology. Ouroboros was a mythical snake that swallowed its tail, and the term
symbolizes the constructive interference of quantum waves associated with classical orbits.
Thus, one can set up a formal analogy between fluctuations of the Riemann staircase and
fluctuations of the spectral staircase of a classically chaotic system. In particular, one can
associate primitive closed orbits of the hypothesized dynamical system with the primes p. The
actions of the closed orbits are

Spm = mγ ln p. (16)

The semiclassical limit corresponds to γ → ∞. The instability exponents for the closed orbits
(independent of the energy, i.e., height γ ) are

λp = ln p. (17)

The periods of the closed orbits would be

Tpm = m ln p. (18)

In section 2 we had mentioned Montgomery’s results [14], that the statistics of the
Riemann zeta zeros are those of the GUE. The theorem proved by Montgomery concerns the
form factor K(τ) of the zeros; this is the Fourier transform of the pair correlation function,
defined as

K(τ) = lim
M→∞


 1

M

M∑
j=1

M∑
k=1

exp(2π iτ(xj − xk)) − sin(Mπτ)

πτ


 , (19)

where xj are the rescaled Riemann zeros, scaled so as to have unit mean spacing. Montgomery
proved that K(τ) was |τ | for |τ | < 1, and he conjectured that K(τ) would be 1 for |τ | > 1, as
it is for the form factor in the GUE. This once again strengthens the connection between the
Riemann zeta function and dynamical quantum chaotic systems.

In section 2 we had mentioned the close agreement of Odlyzko’s calculations with
Montgomery’s theorem. Odlyzko found good overall agreement for K(τ) with the GUE
predictions, but he did find that the K − KGUE reveals a series of spikes for small τ . Such
spikes are predicted by the semiclassical theory, which shows deviations from universality for
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large energy scales, that is short time scales [29]. For |τ | < 1 the semiclassical formula for
K(τ), expressed in terms of the closed-orbit amplitudes and periods, is

K(τ) = π2τ 2
∑

p

∞∑
m=1

B2
pmδ(τ − Tpm/(2πh̄〈d〉)), (20)

where 〈d〉 is the average density of eigenvalues, and Bpm is an amplitude term. In the
semiclassical limit h̄ → 0, h̄〈d〉 scales as h̄−(D−1) for a system with D degrees of freedom
(D > 1), so in that limit the spike associated with a given orbit slides towards τ = 0. For
any finite τ the spikes are thickly clustered in the semiclassical limit, and it is their average
which gives the K = |τ | behaviour. But an accurate evaluation of K(τ) should reveal at least
the first few spikes. In the Riemann zeta case equation (18) shows that spikes should occur at
τ -values proportional to the logarithms of powers of primes. This is precisely the behaviour
observed by Odlyzko. We investigate heuristically here whether these characteristic spikes
could play a role in the small Hurst exponent that we observe.

We now follow closely the treatment in [44] of the Fourier transform of the zero
differences. In the remaining part of this section we will follow the notation of [44] to the
extent feasible. Odlyzko empirically observed long-range correlations between the Riemann
zeta zero differences δj . To understand these correlations, he studied the spectrum of the zero
differences, in particular, he studied

f (x) = c

∣∣∣∣∣
N+M∑
n=N

(δn − 〈δ〉) eiπnx

∣∣∣∣∣
2

, (21)

where c is a constant, x is the transform variable, and the values for N and M are 1012 and
98 303, respectively. He observed very sharp peaks in f (x) for x near 2(log N)−1 log q, where
q is a prime power. He related these spikes to the formulae that connect zeros of the zeta
function and prime numbers. In particular, he used the formula of Landau [42, 43], that for
any y > 0 as N → ∞,

N∑
n=1

eiγny = −(γN/(2π)) exp(−y/2) log(p) + O(exp(−y/2) log(N)) (22)

if y = log(pm) where p is a prime and m is an integer, and
N∑

n=1

eiγny = O(exp(−y/2) log(N)) otherwise. (23)

If we define h(y) = ∑N+M
n=N+1 eiγny , then h(y) will be large precisely in the vicinity of log pm

and small elsewhere. Let us write

γN+k = γN + ka + βk, (24)

where a is the average spacing 2π(ln(γN/2π))−1. Odlyzko refers to a as α, but we already
use α for the Hurst exponent. The βk are usually small, on the order of 1/a. For y small one
can write h(y) = eiγN y

∑M
k=1 eikay+iβky , or approximately

h(y) = eiγN y

M∑
k=1

eikay + iy eiγN y

M∑
k=1

βk eikay . (25)

The first sum on the right-hand side of equation (25) is small for y away from integer multiples
of 2π/a, so it is the second term that contributes the oscillations at y = log pm. On the other
hand, one can approximately write

N+M∑
n=N+1

(δn − 〈δ〉) eiπnx = a−1
N+M∑

n=N+1

(γn+1 − γn − a) eiπnx, (26)
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or,

N+M∑
n=N+1

(δn − 〈δ〉) eiπnx = a−1 eiπNx

M∑
k=1

(βk+1 − βk) eiπkx. (27)

A simple manipulation of equation (27) shows that it is proportional to
∑M

k=1 βk eiπkx , and
hence the Fourier transform of the zero differences can be expected to behave like the
second term on the right-hand side of equation (25), and to have large peaks whenever
x = (a/π) log pm for primes p and m � 1.

To see if the characteristic sharp peaks in the Fourier transform of the zeta zero differences
at powers of the prime numbers could explain the low Hurst exponent that we observe, we
inverted a Fourier transform which has large peaks at 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17 and 19,
and we calculated the Hurst exponent for the sequence thus obtained. We used the value
N = 1012 and M = 104, and we found Hurst exponents in the range 0.04–0.20 (depending on
the sharpness of the assumed peaks), compared to the value 0.09 that we got from the Riemann
zero differences. Thus, low-order primes seem to be a promising avenue to understand the
results that we observe in this study. Further work on this topic would be useful.

In the next section we give a brief summary of the results, and indicate the possible areas
that would seem to be good candidates for further work.

6. Conclusions

Our study for the Riemann zeta function gave a variation in the Hurst exponent from 0.091
to 0.1 for zeros covering the range 107 to 1022, for sample sizes of 10 000 zeros. This shows
that there is a significant amount of self-affinity in the distribution of the zeros. It is quite
intriguing that the distribution for different zeta functions at the intermediate range of zeros
also shows values for the Hurst exponent which are very close to the values found for the
Riemann function zeros. We find that the GUE RMT apparently has a different behaviour
from the Riemann zeros. However, it is not obvious how the comparison between the GUE
and the Riemann zeta zeros is to be made.

One can see that the Hurst exponent is remarkably constant for the different zeta functions.
The low value of the exponent is interesting. It implies that there is a large degree of anti-
persistence. This means that the differences of the zeros jump around significantly, leading to
a noisy curve. The plot of the differences shows a large fractal dimension, about 1.9.

In conclusion, we mention some possible consequences of the above investigation. The
results that we observe seem to indicate that the influence of the low-order primes on
the Hurst exponent for the zeta zeros may be a promising candidate for further study. The
behaviour of the Hurst exponent in the GUE for large matrix sizes is another area which
might benefit from further research. This study considered the Hurst exponent for Dirichlet
L-functions, but the main concentration was on the Riemann zeta function. A more detailed
look at the Hurst exponent for the zero differences of the Dirichlet L-functions might also be
useful.
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